Evaluate the following limit:
1)`lim_(z -> -3) [sqrt("z" + 6)/"z"]`
`lim_(z -> -3) sqrt("z" + 6)/"z"`
= `(lim_(z -> - 3) sqrt(z + 6))/(lim_(z -> - 3) "z") `
= `sqrt(-3 + 6)/-3`
= `sqrt(3)/-3`
= `-1/sqrt(3)`
Evaluate the following limit:
3)`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`
`lim_(z -> -5)[(1/z + 1/5)/(z + 5)]`
= `lim_(z -> - 5) 1/(5z)` ...[∵ z → – 5, z ≠ – 5 ∴ z + 5 ≠ 0]
= `(lim_(z -> - 5)(1))/(lim_(z -> - 5) (5z))`
= `1/(5( - 5))`
= `-1/25`
Evaluate the following limit:
4)`lim_(x -> 3)[sqrt(2x + 6)/x]`
<p>= class="header_text">
= `sqrt(2(3) + 6)/3`
= `sqrt(12)/3`
= `(2sqrt(3))/3`
Evaluate the following limit:
5)`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`
= (– 3) . (2)–4 ...`[because lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `-3xx1/2^4`
= `-3/16`
0 Comments